Showing posts with label Computers. Show all posts
Showing posts with label Computers. Show all posts

Monday, June 18, 2012

Tactus Technology's Dynamic Display Creates Physical Buttons And Shapes on Touchscreens

 
California based Tactus' Technologies, has developed a material that can instantly deform itself to create physically raised buttons and shapes, to coincide with the display on smart phones and other touch devices. What follows, is the technical explanation on how their new tactile surface works, as explained in the company's White Paper;

"Made of a thin multi-layer stack, the top-most layer consists of an optically clear polymer. A number of micro-holes connect the top layers of the panel to a series of microchannels that run through the underlying substrate. The micro channels are filled with a fluid whose optical index of refraction matches that of the surrounding material, making it fully and evenly transparent when light from the display passes through.

Increasing the fluid pressure causes the fluid to push up through the holes and against the top polymer layer, making it expand in pre-defined locations. This enables an array of physical and completely transparent buttons to rise out of the surface. A small internal controller that interfaces with the processor of the touchscreen device controls the rise and fall of the buttons. The controller allows a proximity sensor or a software application to control the state of the buttons. For example, the buttons could be triggered to rise whenever the software calls for the virtual QWERTY keyboard"

I think this is amazing. First, because it's one of those fake looking, sci-fi sounding technologies, that just doesn't seem like it should be real when you first learn about it. But also, because I realize there are a lot of  people who still can't quite get used to the button-less touchscreen thing, and would really like to get their buttons back. Where as I,  am not personally harboring any great longing for the days of raised keys and D-pads. In fact, I'd go so far as to say I've become pretty anti-button at this point, as far as my user interface goes anyway. And this way, everybody's happy. Plus, just thinking about all the future applications one might find for a self deforming material, is pretty inspiring.

-CAINE-

 VIA: tactustechnology.com

Tuesday, January 31, 2012

IBM researchers store one bit of magnetic information in just 12 atoms


Posted by YouTube user: IBMResearchAlmaden

Thanks to the adoption of what is today known as Moore's law as the industry standard for development, computer processing power doubles around once every 18 months. This rate of development is primarily maintained through the gradual miniaturization of various components within modern computers. But simply shrinking components down to create denser storage and faster processors, though obviously a highly successful model for development up to this point, has it's limits. Simply put, once this gradual miniaturization reaches the atomic level, it's game over. Which is why researchers at IBM, recently decided to try a different approach. Rather than shrinking the components themselves, developers found a way of storing the data itself in smaller spaces, 1 bit in just 12 atoms, to be specific.

Friday, June 3, 2011

Moore's Law, Quantum Computing, & Lockheed Martin

In 1965, Intel co-founder Gordon E. Moore published a paper in which he noted that, since it's invention in 1958, the number of components contained within integrated circuits had doubled every year; a trend which he predicted would continue for another 10. Now known as, Moore's law, this trend has in fact continued to this day, with computers doubling their processing power around once every 18 months. But there is a limit to just how long Moore's prediction can hold true, and many now predict that Moore's law will collapse sometime within the next 20 years or so. When it does, there will need to be a new technology waiting in line to take the place of the silicon processor. One likely candidate for a replacement, is the quantum computer.

Unlike digital processors, which are limited to a two state, binary value system of ones and zeros, quantum processors perform their computations by measuring the position, or spin, of individual atoms and interpreting that position as a value or “qubit”. This means, that because atoms can exist in a state of superposition, multiple states simultaneously, a single quantum processor could potentially possess the ability to perform millions of tasks at a time, as oppose to the single task to which modern processors are limited. Which isn't to say that this type of system is not without it's own set of problems and limitations, such as the current need to hold the superconductors within these systems at a temperature near absolute zero, or the fact that the processors themselves are highly susceptibility to interference from everything from simple sound vibrations to cosmic waves.

Despite these limitations, just last week the age of quantum computing moved one step closer to becoming a practical reality when Lockheed Martin became the proud owner of the world’s first first commercially sold quantum computer. This system, known as D-Wave One, uses a superconducting 128-qubit chip called Rainier, has an approximate footprint of about 100 feet, a power requirement of 15 kilowatts and, along with maintenance and tech-support of course, cost the company a rumored 10-million dollars. While the cost, and other obvious impracticalities of Lockheed's new toy make it unlikely that any of us will be surfing the net on a D-Wave of our own anytime in the near future, the system's mere existence is still a potentially important step on the way to making quantum computing a part of everyday reality.

-CAINE-

Source: HCPwire.com VIA: Derren Brown's Blog

If you'd like to try and wade a little deeper into the world of quantum computers on your own, THIS ARTICLE from How Stuff Works has one of the simpler explanations of the processor's inner working I was able to find. Or, if you'd really like to dive into the deep end of the pool, you should check out the following video from UNSW TV.


Posted by Youtube user: UNSW